Appendix 2: Statistical issues that relate to the Drinking-water Standards of New Zealand
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Two issues are presented in outline herein:

· developing compliance rules for percentile standards

· handling non-detect data.

The 1995 Guidelines had a rather full presentation of these, but recent publications: Helsel 2005 and McBride 2005, have elucidated the arguments in full and need not be repeated.

1
Compliance rules for percentile standards

The purpose of a drinking-water monitoring programme is to get as accurate a picture of the water quality as possible over the period of time and geographical area of interest. The reliability of the picture produced by the monitoring data is dependent on, amongst other things, the number of samples taken to construct it. The larger the number of samples, the more reliable the conclusions reached about the water quality are likely to be. Samples should be taken at random. Systematic sampling can introduce bias into the results by failing to detect patterns occurring outside the sampling schedule. Constraints on the resources available for monitoring programmes, however, limit the number of samples that can be collected. It is therefore necessary to use statistical calculations to determine the number of samples that must be taken to provide the required level of confidence in the conclusions reached from the data.

The Drinking-water Standards for New Zealand 2008 (DWSNZ) are designed to work to 95 percentile standards (as discussed in section 6.2 of these Guidelines). Hereafter we will discuss only the 95th percentile case.

In other words, they aim to ensure that in a supply that complies with the DWSNZ, health-significant determinands are present at levels less than their MAVs for 95 percent or more of the time. Note that this is 95 percent of the time, not 95 percent of the samples. This is a deliberate choice. Variability in such things as the quality of the water and false positive results mean that with the limited monitoring data available, there will be a degree of uncertainty as to the ability of a supply to meet the 95th percentile requirement. The DWSNZ are based on a 95 percent confidence that the 95th percentile is being met. From these two parameters, 95 percent confidence in acceptable water quality for 95 percent of the time, the number of monitoring samples required for demonstrating compliance can be calculated.

In the 1995 edition of the DWSNZ these calculations were made using classical statistical methods. In the DWSNZ 2000 and 2005/2008 the classical basis has been replaced by the use of a Bayesian statistical method. The main consequence of this change is that fewer samples need to be taken to demonstrate the same level of confidence in compliance than was the case when the classical calculations were used.

Classical evaluation of risks

When evaluating whether the value of a determinand is less than, or equal to, its MAV for 95 percent of the time in a classical framework, one of two types of error can be committed:

1
from the number of transgressions it is incorrectly inferred that there was non-compliance. The risk of this occurring is termed the ‘supplier’s risk’
2
from the number of transgressions it is incorrectly inferred that there was compliance. The risk of this occurring is termed the ‘consumer’s risk’.

To quantify these risks using classical statistical methods it is assumed that sampling is random in time. To perform these calculations the probability of a single sample transgressing its MAV must be selected. This is done by assuming that the water is borderline for compliance, ie, the probability of the sample exceeding its MAV is 5 percent (95 percent of the time the MAV is not exceeded implies that 5 percent of the time it is, if the situation is borderline). This assumption of course makes for a very pessimistic approach.

The results obtained from the classical calculations are shown in Table A1. They are the basis for the statements made in section 1.3 of the DWSNZ 1995, showing how the number of samples necessary to demonstrate compliance 95 percent of the time depends on the number of samples exceeding the MAV. To keep the consumer’s risk to less than 5 percent therefore requires a minimum of 59 samples to be taken, none of which are permitted to transgress the MAV. If one of the monitoring samples transgresses its MAV, there must be at least another 92 that have not exceeded the MAV to be 95 percent confident that the supply is in compliance 95 percent of the time.

Table A1: Numbers of samples and allowable transgressions needed to keep maximum risks below 5 percent when assessing compliance with a 95th percentile standard

	Number of allowable transgressions
	Number of samples required to keep the maximum consumer’s risk below 5% using the following methods
	Number of samples required to keep the maximum supplier’s risk below 5% using the following methods

	
	Classical
	Bayesian*
	Classical
	Bayesian*

	0
	59–92#
	38–76#
	1†
	‡

	1
	93–123
	77–108
	2–7
	1–3

	2
	124–152
	109–138
	8–16
	4–11

	3
	153–180
	139–166
	17–28
	12–22

	4
	181–207
	167–193
	29–40
	23–34

	5
	208–233
	194–220
	41–53
	35–46

	6
	234–259
	221–246
	54–67
	47–60

	7
	260–285
	247–272
	68–81
	61–74

	8
	286–310
	273–298
	82–95
	75–88

	9
	311–335
	299–323
	96–110
	89–102


*
These Bayesian results are obtained using Jeffreys’ uninformative prior, as discussed in the next section.

#
It is not possible to keep the consumer’s risk below 5 percent if less than 59 samples are to hand (classical method) or if less than 38 samples are to hand (Bayesian method with an uninformative (Jeffreys’) prior).

†
The risk is exactly 5 percent in this case.

‡
It is impossible to keep the supplier’s risk below 5 percent if no transgressions are allowed in this Bayesian approach.

Bayesian evaluation of risks

In the classical approach to calculating these calculations no use is made of any previously obtained data or opinions; a single particular value of the probability of an exceedance occurring is selected (5 percent in this case). In using the Bayesian approach, the probability of exceedance is regarded as a continuous variable about which confidence statements can be made. To do this, use is made of prior knowledge, or opinion, to define beforehand a ‘prior’ probability distribution. This probability can then be upgraded using the actual data collected to obtain a ‘posterior’ probability that is termed the ‘Confidence of Compliance’. Note that this approach does not require the borderline assumption, so results are always less pessimistic than those obtained under the classical approach, for every possible prior.

These calculations lead to Figure A1 from which the required number of samples for a given number of allowable transgressions can be read. Key values from the data sets used to produce these plots are summarised in Table A1. These values are contained in Table A1.4 of the DWSNZ.
Figure A1: Bayesian confidence of compliance curves for a 95th percentile standard, using Jeffreys’ uninformative
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The desired maximum supplier’s risk (5 percent) corresponds to confidence of failure = 95 percent, as shown by the long dashed line on each graph. The desired maximum consumer’s risk (5 percent) corresponds to confidence of compliance = 95 percent, as shown by the short dashed line on each graph. Details of the calculation procedure and the details of Jeffreys’ prior, are given in McBride and Ellis (2001) and McBride (2005).

Choice of priors

Using the Bayesian approach requires a decision to be made about the nature of the prior probability distribution (the ‘prior’). When there is no historical information on which to base a prior, the common-sense approach is to adopt an ‘uninformative’ prior that best reflects our ignorance of the likelihood of compliance. The calculations for Figure A1, from which results for the DWSNZ were obtained, use the Jeffrey’s (uninformative) prior. Strictly, there is no such thing as a truly ‘uninformative’ prior; any statement about the probability of the state of things is saying something. Nevertheless, the term ‘uninformative’ is in widespread use in the Bayesian statistical literature. Arguments in favour of the (U‑shaped) Jeffrey’s prior are given in McBride and Ellis (2001).

There may be situations, however, in which there is prior knowledge of the likelihood of compliance. Bayesian Confidence of Compliance calculations allow account to be taken of this knowledge, and the numbers of samples needing to be taken appropriately modified.

Timeframe for compliance

The statistics provided in Table A1 are independent of time. The number of transgressions that can occur while still keeping the risk to the consumer to less than 5 percent and hence comply with the DWSNZ depends only upon the number of samples taken. For example, if two transgressions are recorded, so long as at least 107 other samples (giving a total of 109) have not exceeded the MAV, the risk to the consumer is less than 5 percent irrespective of the period over which the samples were collected.

For the purposes of compliance, however, it is necessary to set a time period within which the statistics are to be applied. The reason for this is demonstrated by considering a situation in which 48 samples are collected per year for three years (total 144 samples), and that only two of these samples exceed the MAV, both in the last two months of sampling. When the whole three years is considered, the risk to the consumer is less than 5 percent because a maximum of three transgressions is allowed for 144 samples (see the first Bayesian column in Table A1). However, the fact that both transgressions occur in a short period indicates that there may well be a water quality problem that has developed near the end of the three-year period. This possible problem is correctly identified if a shorter period for assessing compliance is defined: for example, one year. Now, for the first two years in which there were no transgressions, the number of samples taken meets the requirements of Table A1 (a minimum of 38 samples taken if there is no exceedence). The supply does not comply in the last year however, because there are two transgressions during this year, and Table 1 requires a minimum of 109 samples to have been taken to reduce the consumer’s risk to less than 5 percent.

For the purposes of the DWSNZ, the period over which compliance is assessed has been indexed to the community size, as has the sampling frequency, which should assist in minimising these issues.

Compliance for small supplies

Small supplies have been given the benefit of the doubt to allow a reduction in the burden that collection of 38 samples a year would otherwise place on them. In doing this it is assumed that 12 non-transgressions indicates no transgressions at least 95 percent of the time. However, in the event that one sample exceeds the MAV, there is evidence that the 95th percentile standard may not be being met, and further sampling requirements set out in the DWSNZ must be followed.

2
Handling non-detects

New Zealand chemical analysts routinely define a detection limit or limit of detection as some multiple (typically between 2 and 4) of the standard deviation of a series of blanks, and report all data measured below that limit as less than that limit. Let’s denote the detection limit by L. Three cases should be considered.

1
Few less-than data. When a dataset contains only a few data (say <10 percent) below L, analysis of those data can proceed by replacing those (left-censored) data by ½L. This is a generally satisfactory procedure (Ellis 1989).

2
A moderate amount of less-than data. If there are a moderate number of censored data, replacement by ½L is unsatisfactory. Instead, use a statistical distribution fitting method (Helsel and Hirsch 1992, and Helsel 2005), as depicted on Figure A1, ie:
· fit a plausible statistical distribution to the data above L (eg, using a probability plot)

· extrapolate that distribution below L to fill-in values below L
· add up the concentrations.

3
Mostly, or all, less-than data. If there are many less-thans in a dataset neither of the above procedures can be used. For example, take a set of results for ten individual chemicals: <0.1, <0.1, <0.1, <0.1, <0.1, <0.1, <0.1, <0.1, 0.8, <0.1. What then is the total? Replacing each ‘<0.1’ by 0.1 is implausible (could all nine less-thans really be ‘knocking at the door’?), and we should not fit a distribution to just one datum.
 Even replacement by 0.05 seems implausible.

Taking data at face-value we could say that the range of total concentration is 0.8–1.7, where the former figure is obtained by replacing all the censored data by zeroes and the latter figure by replacing those data by the detection limits. Beyond that little statistical help is available, and one must rely on plausibility arguments. One should also note that it is much better practice to analyse the compounds with a method that has a lower limit of detection, reducing the number of measurements if budgets are limited.

Figure A2: Fitting a lognormal distribution to >L data (where L = 5), and extrapolating back to obtain values of <L data
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Each fill-in value (open circles) is selected randomly from the left tail of a lognormal distribution.
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�	Actually, we can: any distribution fits just one datum!
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